Origin of radiometric dating

These differing rates of decay help make uranium-lead dating one of the most reliable methods of radiometric dating because they provide two different decay clocks.

This provides a built-in cross-check to more accurately determine the age of the sample.

So, if you know the radioactive isotope found in a substance and the isotope's half-life, you can calculate the age of the substance. Well, a simple explanation is that it is the time required for a quantity to fall to half of its starting value.

So, you might say that the 'full-life' of a radioactive isotope ends when it has given off all of its radiation and reaches a point of being non-radioactive.

In fact, this form of dating has been used to date the age of rocks brought back to Earth from the moon.

So, we see there are a number of different methods for dating rocks and other non-living things, but what if our sample is organic in nature?

So, we rely on radiometric dating to calculate their ages.The methods work because radioactive elements are unstable, and they are always trying to move to a more stable state. This process by which an unstable atomic nucleus loses energy by releasing radiation is called radioactive decay.The thing that makes this decay process so valuable for determining the age of an object is that each radioactive isotope decays at its own fixed rate, which is expressed in terms of its half-life.Uranium is not the only isotope that can be used to date rocks; we do see additional methods of radiometric dating based on the decay of different isotopes.For example, with potassium-argon dating, we can tell the age of materials that contain potassium because we know that potassium-40 decays into argon-40 with a half-life of 1.3 billion years.

Leave a Reply